

HEP300 电子电位器 用户手册

目 次

前	言	. 3
1	概述	. 4
2	性能和特点	. 4
3	规格	. 4
4	操作	. 5
	4.1 电位器及指示灯功能描述 4.2 UP/DOWN 开关量输入口调节输出模式 4.3 Vin 模拟量输入口调节输出模式 4.3 Vin 模拟量输入口调节输出模式	. 6
5	接线	. 9
6	典型应用图	10
7	安装	11
		11
	7.2 电池电压输入	11

前 言

SmartGen_{是众智的注册商标}

不经过本公司的允许,本文档的任何部分不能被复制(包括图片及图标)。 本公司保留更改本文档内容的权利,而不通知用户。

地址: 中国·河南省郑州市高新区雪梅街 28 号 电话: +86-371-67988888/67981888/67992951

+86-371-67981000(外贸)

传真: +86-371-67992952

网址: www.smartgen.com.cn/

www.smartgen.cn/

邮箱: sales@smartgen.cn

本文档适用于HEP300模块。

表1 版本发展历史

日期	版本	内容	
2014-10-20	1.0	开始发布。	
2015-10-08	1.1	修改描述及典型应用图。	
2016-11-01 1.2		修改面膜。	
2024-12-13 1.3		更新公司 Logo 及公司的信息。	

1 概述

HEP300电子电位器采用微处理器技术集成了数字化、智能化、网络化技术,实现了开关量信号或模拟电压信号转化为电压、电流、PWM信号等功能,不仅可以用于把同步或功率均分控制器的开关量输出信号(升速/降速、升压/降压)转换成调速器(GOV)或调压器(AVR)可以使用的模拟量信号(±10V直流电压、±20mA直流电流或PWM脉冲信号),也可以把直流电压信号转换成直流电流及PWM信号(当传输距离稍远电压信号衰减严重时),除此之外还带下垂PWM信号输出。通过调节面板上的电位器来设定输出参数的大小范围,操作简单,运行可靠,可广泛应用于电子调速、调压、并联系统。

2 性能和特点

其主要特点如下:

- ——所有参数都可以通过面板电位器调节,可调节参数:积分时间(斜率)、预设值、输出范围、下垂脉宽调制:
- ——具有开关量信号(UP、DOWN)和模拟电压信号两种输入方式;
- ——多种输出信号: DC±10V、DC±20mA、500Hz(0-100)%脉宽 PWM;
- ——具有 Link 通讯口,可通过上位机软件监控输入输出数据;
- ——供电电源范围宽 DC (8~35)V,能适应不同的起动电池电压环境;
- ——模块采用 35mm 导轨安装方式;
- ——模块化结构设计,可插拔式接线端子,结构紧凑,安装方便。

3 规格

表2 规格参数

项目	内容		
工作电压	DC24V,也可用于 DC12V 系统		
整机功耗	<3W(待机方式: ≤2W)		
积分时间(斜率)	2.5s-125s		
输入信号电压	DC±10V		
电压输出信号	DC±10V		
电流输出信号	DC±20mA		
PWM 输出信号	6V,500Hz(0-100)%脉宽 PWM		
下垂 PWM 输出信号	6V,500Hz(0-100)%脉宽 PWM		
输入到输出响应时间	<100ms		
外形尺寸	89.7mm x 71.6mm x 60.7mm		
工作温度	(-25~+70)°C		
工作湿度	(20~93)%RH		
贮存温度	(-25~+70)°C		
重量	0.24kg		

SmartGen

4 操作

4.1 电位器及指示灯功能描述

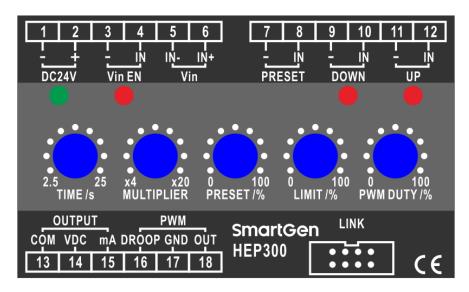


图1 前面板图

表3 电位器及指示灯功能描述

项目	功能描述			
TIME	积分时间电位器,从-10V到 10V 所需时间,即调节斜率,调节斜率不随调节范围			
TIIVIE	(LIMIT 电位器)的改变而改变。			
MULTIPLIER	积分时间倍率电位器,此电位器值乘以 TIME 电位器值等于积分时间。			
	输出预设值百分比电位器,输出预设值即调节中心点电压,在重新上电后或			
	PRESET IN 输入口有效时,本模块输出此值。在 PRESET 开关量输入口有效后,			
PRESET	自动保存 PRESET 电位器所代表的的预设值,当 PRESET 开关量输入口无效后,			
	调节此电位器不影响输出预设值。			
	输出预设值 = -5V+此百分比值*10V			
	输出限制百分比电位器			
LIMIT	输出最小限制值 = 输出预设值-(此百分比值*5V)			
	输出最大限制值 = 输出预设值+(此百分比值*5V)			
PWM DUTY	DROOP 输出 PWM 占空比。			
绿色电源灯	点亮时表示电源正常。			
红色 Vin EN 灯	点亮时表示 Vin EN 输入口闭合。			
红色 DOWN 灯	点亮时表示 DOWN 输入口闭合,当调节输出到下限值时闪烁。			
红色 UP 灯	点亮时 UP 表示输入口闭合,当调节输出到上限值时闪烁。			

4.2 UP/DOWN 开关量输入口调节输出模式

此UP/DOWN开关量输入口信号来自于同步或功率均分控制器的开关量输出信号(升速/降速、升压/降压),本模块将此信号转换成调速器(GOV)或调压器(AVR)可以使用的模拟量信号(±10V直流电压、±20mA直流电流或PWM脉冲信号)。

调节顺序:

- a) 首先确保 Vin EN 开关量输入口无效进入 UP/DOWN 开关量输入口调节输出模式。
- b) 接着调节斜率,就是 UP/DOWN 输入口有效后输出值达到目标值后的快慢,这个通过调节 TIME、MULTIPLIER 电位器,由两者的乘积获得积分时间,以输出电压信号为例:此积分时间即输出值从-10V 到 10V 所需时间,调节斜率就是单位时间调节的电压值,如果 TIME 电位器为 10s,MULTIPLIER 电位器为 5,那么积分时间是 50s,调节斜率是 0.4V/s(即(10V-(-10V))/50s);如下图所示:

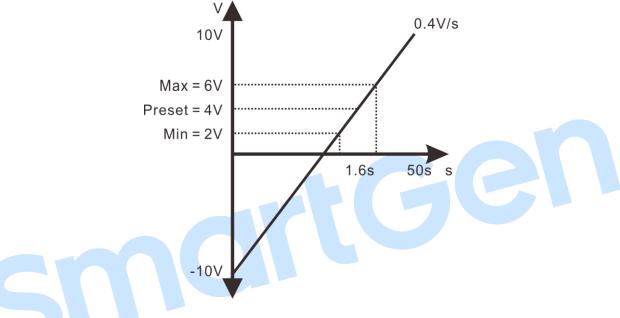


图2 斜率图

注意:调节斜率不跟随调输出预设值和输出限制值的改变而改变。

c) 接着确定调节中心点,就是模块在 PRESET IN 输入口有效时本模块输出预设值,调节 PRESET 百分比电位器,由(-5V+此百分比值*10V)得调节中心点,即输出预设值; 注意: 在 PRESET 开关量输入口有效后,自动保存 PRESET 电位器所代表的的预设值,模块上电复位后输出口此

预设值;当 PRESET 开关量输入口无效后,调节此 PRESET 电位器不影响调节中心点的大小。

d) 然后再确定输出限制值,通过调节 LIMIT 百分比电位器,以输出电压信号为例:输出最小限制值 = 输出预设值-(此百分比值*5V),输出最大限制值 = 输出预设值+(此百分比值*5V),如果 PRESET 为 90%, LIMIT 为 40%,那么调节中心点是 4V,调节范围是 2V 到 6V;对应关系如下表所示:

表4 调节中心点和调节范围对应关系

调节中心点		调节范围		
PRESET(%)	电压值(V)	LIMIT(%)	电压值(V)	
0	-5.0	0	±0	
10	-4.0	10	±0.5	
20	-3.0	20	±1.0	
30	-2.0	30	±1.5	
40	-1.0	40	±2.0	
50	0.0	50	±2.5	
60	1.0	60	±3.0	
70	2.0	70	±3.5	
80	3.0	80	±4.0	
90	4.0	90	±4.5	
100	5.0	100	±5.0	

- e) 如果本模块控制的调速器或调压器上有下垂控制并且控制信号为 500Hz 的 PWM, 此时要确定下垂 PWM, 通过调节 PWM DUTY 百分比电位器获得下垂 PWM 的占空比;
- f) 确定好上述参数就可以通过 UP/DOWN 输入口控制输出的电压、电流、PWM, 其输出对应关系如下表:

表5 输出电压、电流、PWM 和 DROOP 对应关系

输出电压(V)	输出电压(V) 输出电流(mA)		输出 DROOP(%)
-10	-20	0	
-8	-16	10	
-6	-12	20	
-4	-8	30	
-2	-4	40	
0	0	50	只跟 PWM Duty 有关
2	4	60	
4	8	70	
6	12	80	
8	16	90	
10	20	100	

4.3 Vin 模拟量输入口调节输出模式

此VIN模拟量输入口信号来自于其他调速或调压控制器的电压输出信号,本模块将此信号转换成将此信号转换成调速器(GOV)或调压器(AVR)可以使用的模拟量信号(±10V直流电压、±20mA直流电流或PWM脉冲信号)。

- a) 首先使 Vin EN 开关量输入口有效进入 Vin 模拟量输入口调节输出模式。
- b) 如果本模块控制的调速器或调压器上有下垂控制并且控制信号为 500Hz 的 PWM, 此时要确定下垂 PWM, 通过调节 PWM DUTY 百分比电位器获得下垂 PWM 的占空比;
- c) 然后就可以通过 Vin 模拟量输入口输入的电压值控制输出的电压、电流、PWM,此输入电压有效 范围为±10V,其输入输出对应关系如下表:

表6 输入输出对应关系

输入输出电压(V)	输出电流(mA)	输出 PWM(%)	输出 DROOP(%)
-10	-20	0	
-8	-16	10	
-6	-12	20	
-5	-10	25	
-4	-8	30	
-2	-4	40	
0	0	50	只跟 PWM Duty 有关
2	4	60	
4	8	70	
5	10	75	
6	12	80	
8	16	90	
10	20	100	

5 接线

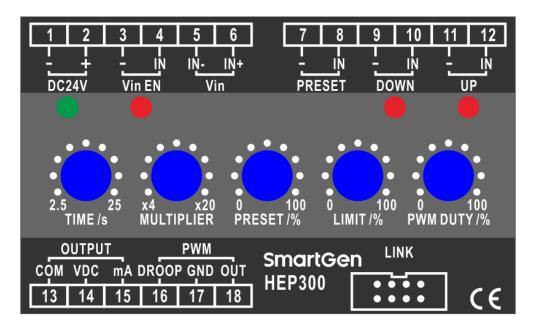


图3 前面板图

表7 接线端子接线描述

辿っ口	다 살	华 世五印	∀ ∴	
端子号	功能	线截面积 1.5mm ²	备 注	
1	供电电源 B-		供电电源(8-35V)	
2	供电电源 B+	1.5mm ²	人名·巴林(0 33V)	
3	Vin EN 开关量输入口-	1.0mm ²	VIN 直流电压输入使能端,当此输入口闭合有效	
4	Vin EN 开关量输入口 IN	1.0mm ²	时, 由模拟电压 Vin 控制 14 端子、15 端子、	
	111	1.0mm ²	18 端子的输出	
5	5 Vin 模拟输入电压-		 接调速或调压控制器的电压输出信号	
6	Vin 模拟输入电压+	1.0mm ²	7 按师歴以师压任刑备的电压制由信与	
7	PRESET 开关量输入口-	1.0mm ²	PRESET 百分比电位器输出使能端, 当此输入口	
8	PRESET 开关量输入口 IN	1.0mm ²	闭合有效时,14 端子、15 端子、18 端子输出	
0			PRESET 百分比电位器代表的预设值。	
9	DOWN 开关量输入口-	1.0mm ²	接同步或功率分配控制器的继电器输出信号,	
10	DOWN 开关量输入口 IN	1.0mm ²	当此输入口闭合有效时,向下限调节。	
11	UP 开关量输入口-	1.0mm ²	接同步或功率分配控制器的继电器输出信号,	
12	UP 开关量输入口 IN	1.0mm ²	当此输入口闭合有效时,向上限调节。	
13	输出电压和电流公共端	1.0mm ²		
14	电压输出口	1.0mm ²	输出±10V	
15	电流输出口	1.0mm ²	输出±20mA	
16	DROOP 输出	1.0mm ²	下垂输出,500Hz 的可变占空比的 PWM	
17	DROOP和OUT公共端	1.0mm ²		
18	OUT 输出	1.0mm ²	500Hz 的可变占空比的 PWM	

▲注意: LINK接口为参数编程接口,可通过SG72适配器使用PC机对模块编程。如需远程监控,请使用我公司的SG485模块连接。

6 典型应用图

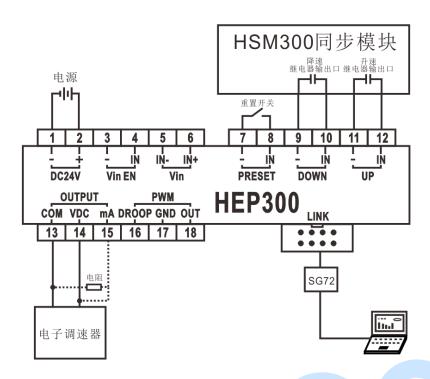
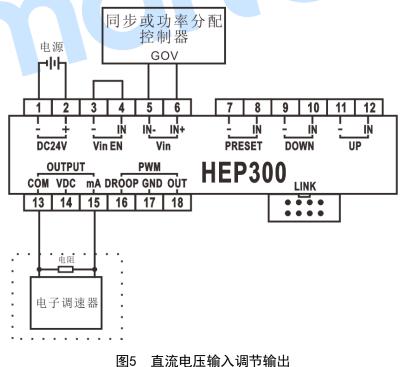



图4 升降速输入调节输出

注意: 这里的电阻作用是把电流信号转化为电压信号输出给电子调速器(防止电压信号衰减); 虚线表示另一种输出接线方式。

▲注意: 这里的电阻作用是把电流信号转化为电压信号输出给电子调速器(防止电压信号衰减);虚线表示电阻接到电

子调速器端。

7 安装

7.1 外形及开孔尺寸

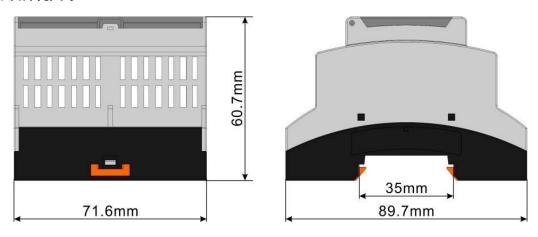
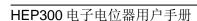



图6 外形及开孔尺寸

7.2 电池电压输入

本模块能适用于DC(8-35)V电池电压的环境,电池的负极必须可靠接发动机外壳。模块电源B+和B-到电池正负极连线不能小于1.5mm²,如果装有浮充充电器,请将充电器的输出线直接连到电池正负极上,再从电池正负极上单独连线到模块正负电源输入端,以防止充电器干扰模块的正常运行。

